Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 179
Filtrar
1.
Sci Rep ; 14(1): 10190, 2024 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702366

RESUMO

Dysfunction of central serotonergic neurons is known to cause depressive disorders in humans, who often show reproductive and/or glucose metabolism disorders. This study examined whether dorsal raphe (DR) serotonergic neurons sense high glucose availability to upregulate reproductive function via activating hypothalamic arcuate (ARC) kisspeptin neurons (= KNDy neurons), a dominant stimulator of gonadotropin-releasing hormone (GnRH)/gonadotropin pulses, using female rats and goats. RNA-seq and histological analysis revealed that stimulatory serotonin-2C receptor (5HT2CR) was mainly expressed in the KNDy neurons in female rats. The serotonergic reuptake inhibitor administration into the mediobasal hypothalamus (MBH), including the ARC, significantly blocked glucoprivic suppression of luteinizing hormone (LH) pulses and hyperglycemia induced by intravenous 2-deoxy-D-glucose (2DG) administration in female rats. A local infusion of glucose into the DR significantly increased in vivo serotonin release in the MBH and partly restored LH pulses and hyperglycemia in the 2DG-treated female rats. Furthermore, central administration of serotonin or a 5HT2CR agonist immediately evoked GnRH pulse generator activity, and central 5HT2CR antagonism blocked the serotonin-induced facilitation of GnRH pulse generator activity in ovariectomized goats. These results suggest that DR serotonergic neurons sense high glucose availability to reduce gluconeogenesis and upregulate reproductive function by activating GnRH/LH pulse generator activity in mammals.


Assuntos
Glucose , Cabras , Hormônio Liberador de Gonadotropina , Hormônio Luteinizante , Receptor 5-HT2C de Serotonina , Neurônios Serotoninérgicos , Animais , Hormônio Luteinizante/metabolismo , Feminino , Receptor 5-HT2C de Serotonina/metabolismo , Ratos , Neurônios Serotoninérgicos/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Glucose/metabolismo , Serotonina/metabolismo , Kisspeptinas/metabolismo , Núcleo Arqueado do Hipotálamo/metabolismo , Núcleo Arqueado do Hipotálamo/efeitos dos fármacos , Núcleo Dorsal da Rafe/metabolismo , Núcleo Dorsal da Rafe/efeitos dos fármacos , Ratos Sprague-Dawley
2.
Neuropsychopharmacology ; 49(6): 1014-1023, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38368493

RESUMO

In the central nervous system, noradrenaline transmission controls the degree to which we are awake, alert, and attentive. Aberrant noradrenaline transmission is associated with pathological forms of hyper- and hypo-arousal that present in numerous neuropsychiatric disorders often associated with dysfunction in serotonin transmission. In vivo, noradrenaline regulates the release of serotonin because noradrenergic input drives the serotonin neurons to fire action potentials via activation of excitatory α1-adrenergic receptors (α1-AR). Despite the critical influence of noradrenaline on the activity of dorsal raphe serotonin neurons, the source of noradrenergic afferents has not been resolved and the presynaptic mechanisms that regulate noradrenaline-dependent synaptic transmission have not been described. Using an acute brain slice preparation from male and female mice and electrophysiological recordings from dorsal raphe serotonin neurons, we found that selective optogenetic activation of locus coeruleus terminals in the dorsal raphe was sufficient to produce an α1-AR-mediated excitatory postsynaptic current (α1-AR-EPSC). Activation of inhibitory α2-adrenergic receptors (α2-AR) with UK-14,304 eliminated the α1-AR-EPSC via presynaptic inhibition of noradrenaline release, likely via inhibition of voltage-gated calcium channels. In a subset of serotonin neurons, activation of postsynaptic α2-AR produced an outward current through activation of GIRK potassium conductance. Further, in vivo activation of α2-AR by systemic administration of clonidine reduced the expression of c-fos in the dorsal raphe serotonin neurons, indicating reduced neural activity. Thus, α2-AR are critical regulators of serotonin neuron excitability.


Assuntos
Núcleo Dorsal da Rafe , Locus Cerúleo , Receptores Adrenérgicos alfa 2 , Neurônios Serotoninérgicos , Transmissão Sináptica , Animais , Núcleo Dorsal da Rafe/efeitos dos fármacos , Núcleo Dorsal da Rafe/fisiologia , Núcleo Dorsal da Rafe/metabolismo , Masculino , Receptores Adrenérgicos alfa 2/metabolismo , Receptores Adrenérgicos alfa 2/fisiologia , Receptores Adrenérgicos alfa 2/efeitos dos fármacos , Locus Cerúleo/efeitos dos fármacos , Locus Cerúleo/fisiologia , Feminino , Neurônios Serotoninérgicos/efeitos dos fármacos , Neurônios Serotoninérgicos/fisiologia , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia , Camundongos , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Optogenética , Agonistas de Receptores Adrenérgicos alfa 2/farmacologia , Camundongos Endogâmicos C57BL , Norepinefrina/metabolismo , Camundongos Transgênicos
3.
Science ; 378(6618): 390-398, 2022 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-36302033

RESUMO

Major depressive disorder (MDD) is one of the most common mental disorders. We designed a fast-onset antidepressant that works by disrupting the interaction between the serotonin transporter (SERT) and neuronal nitric oxide synthase (nNOS) in the dorsal raphe nucleus (DRN). Chronic unpredictable mild stress (CMS) selectively increased the SERT-nNOS complex in the DRN in mice. Augmentation of SERT-nNOS interactions in the DRN caused a depression-like phenotype and accounted for the CMS-induced depressive behaviors. Disrupting the SERT-nNOS interaction produced a fast-onset antidepressant effect by enhancing serotonin signaling in forebrain circuits. We discovered a small-molecule compound, ZZL-7, that elicited an antidepressant effect 2 hours after treatment without undesirable side effects. This compound, or analogous reagents, may serve as a new, rapidly acting treatment for MDD.


Assuntos
Antidepressivos , Transtorno Depressivo Maior , Núcleo Dorsal da Rafe , Desenho de Fármacos , Óxido Nítrico Sintase Tipo I , Proteínas da Membrana Plasmática de Transporte de Serotonina , Animais , Camundongos , Antidepressivos/química , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Transtorno Depressivo Maior/tratamento farmacológico , Núcleo Dorsal da Rafe/efeitos dos fármacos , Núcleo Dorsal da Rafe/metabolismo , Óxido Nítrico Sintase Tipo I/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo
4.
Int J Neurosci ; 132(1): 23-30, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32677492

RESUMO

INTRODUCTION: Antidepressants increase the level of 5-HT in the somatodendritic region of the serotonergic dorsal raphe nucleus (DRN) neurons in the first few days of their usage, which, in turn, inhibits the serotonergic neurons locally. Pindolol may eliminate this inhibition when used in combination with antidepressants. MATERIAL AND METHODS: We aimed to determine the effect of pindolol on 5-HT1A receptor response in the DRN neurons, using voltage clamp recordings and prove the potentiation of antidepressant effect of venlafaxine by pindolol through behavior experiments. Balb/c mice, 28-35 days-old were used. RESULTS: 5-HT application (25 µM) induced an outward current by 23.36 ± 3.79 pA at the neurons in the dorsal subnucleus of DRN. This effect was inhibited by pre-administration of WAY-100135 (21 µM) and pindolol (10 µM) separately. The current induced by 5-HT and 8-OHDPAT have no statistically significance. 8-OHDPAT (30 µM) induced a 5-HT-like outward current, which was inhibited by pre-administration of pindolol (10 µM). Combination of venlafaxine (20 mg/kg/day) and pindolol (15 mg/kg/day) significantly reduced immobilization time when compared to the control group in tail suspension test and forced swim test without any significant change in locomotor activity. Administration of venlafaxine (20 mg/kg/day) alone or pindolol (15 mg/kg/day) alone did not significantly reduce immobilization time. CONCLUSION: Pindolol has the potential to prevent the inhibition of serotonergic neurons after antidepressant use. Hence, we, for the first time, demonstrated that pindolol can potentiate antidepressant effect of venlafaxine. In the mood disorders, pindolol is likely to increase the effectiveness of antidepressant drugs when given in combination.


Assuntos
Antidepressivos/farmacologia , Núcleo Dorsal da Rafe/efeitos dos fármacos , Atividade Motora/efeitos dos fármacos , Pindolol/farmacologia , Receptor 5-HT1A de Serotonina/efeitos dos fármacos , Antagonistas da Serotonina/farmacologia , Cloridrato de Venlafaxina/farmacologia , Animais , Antidepressivos/administração & dosagem , Comportamento Animal/efeitos dos fármacos , Sinergismo Farmacológico , Camundongos , Camundongos Endogâmicos BALB C , Pindolol/administração & dosagem , Piperazinas/farmacologia , Antagonistas da Serotonina/administração & dosagem , Cloridrato de Venlafaxina/administração & dosagem
5.
Brain Res Bull ; 179: 36-48, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34871711

RESUMO

Methamphetamine (METH), a synthetically produced central nervous system stimulant, is one of the most illicit and addictive drugs worldwide. Protein phosphatase Mg2 + /Mn2 + -dependent 1F F (PPM1F) has been reported to exert multiple biological and cellular functions. Nevertheless, the effects of PPM1F and its neuronal substrates on METH addiction remain unclear. Herein, we first established a METH-induced conditioned place preference (CPP) mouse model. We showed that PPM1F is widely distributed in 5-HT neurons of the dorsal raphe nucleus (DRN), and METH treatment decreased the expression of PPM1F in DRN, which was negatively correlated with METH-induced CPP behaviors. Knockout of PPM1F mediated by adeno-associated virus (AAV) in DRN produced enhanced susceptibility to METH-induced CPP, whereas the overexpression of PPM1F in DRN attenuated METH-induced CPP phenotypes. The expression levels of Tryptophan hydroxylase2 (TPH2) and serotonin transporter (SERT) were down-regulated with a concurrent reduction in 5-hydroxytryptamine (5-HT), tryptophan hydroxylase2 (TPH2)-immunoreactivity neurons and 5-HT levels in DRN of PPM1F knockout mice. In the end, decreased expression levels of PPM1F were found in the blood of METH abusers and METH-taking mice. These results suggest that PPM1F in DRN 5-HT neurons regulates METH-induced CPP behaviors by modulating the key components of the 5-HT neurotransmitter system, which might be an important pathological gene and diagnostic marker for METH-induced addiction.


Assuntos
Comportamento Animal/efeitos dos fármacos , Estimulantes do Sistema Nervoso Central/farmacologia , Núcleo Dorsal da Rafe/efeitos dos fármacos , Metanfetamina/farmacologia , Fosfoproteínas Fosfatases/efeitos dos fármacos , Neurônios Serotoninérgicos/efeitos dos fármacos , Animais , Condicionamento Clássico/efeitos dos fármacos , Modelos Animais de Doenças , Camundongos , Camundongos Knockout , Fosfoproteínas Fosfatases/deficiência , Fosfoproteínas Fosfatases/metabolismo
6.
J Psychopharmacol ; 35(12): 1523-1535, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34872406

RESUMO

BACKGROUND: Acute hypoxia, which is panicogenic in humans, also evokes panic-like behavior in male rats. Panic disorder is more common in women and susceptibility increases during the premenstrual phase of the cycle. AIMS: We here investigated for the first time the impact of hypoxia on the expression of panic-like escape behavior by female rats and its relationship with the estrous cycle. We also evaluated functional activation of the midbrain panic circuitry in response to this panicogenic stimulus and whether short-term, low-dose fluoxetine treatment inhibits the hyper-responsiveness of females in late diestrus. METHODS: Male and female Sprague Dawley rats were exposed to 7% O2. Females in late diestrus were also tested after short-term treatment with fluoxetine (1.75 or 10 mg/kg, i.p.). Brains were harvested and processed for c-Fos and tryptophan hydroxylase immunoreactivity in the periaqueductal gray matter (PAG) and dorsal raphe nucleus (DR). RESULTS: Acute hypoxia evoked escape in both sexes. Overall, females were more responsive than males and this is clearer in late diestrus phase. In both sexes, hypoxia induced functional activation (c-Fos expression) in non-serotonergic cells in the lateral wings of the DR and dorsomedial PAG, which was greater in late diestrus than proestrus (lowest behavioral response to hypoxia). Increased responding in late diestrus (behavioral and cellular levels) was prevented by 1.75, but not 10 mg/kg fluoxetine. DISCUSSION: The response of female rats to acute hypoxia models panic behavior in women. Low-dose fluoxetine administered in the premenstrual phase deserves further attention for management of panic disorders in women.


Assuntos
Comportamento Animal/efeitos dos fármacos , Diestro/efeitos dos fármacos , Núcleo Dorsal da Rafe/efeitos dos fármacos , Fluoxetina/farmacologia , Hipóxia/complicações , Pânico/efeitos dos fármacos , Substância Cinzenta Periaquedutal/efeitos dos fármacos , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Caracteres Sexuais , Animais , Modelos Animais de Doenças , Feminino , Masculino , Ciclo Menstrual/efeitos dos fármacos , Transtorno de Pânico/tratamento farmacológico , Ratos , Ratos Sprague-Dawley , Inibidores Seletivos de Recaptação de Serotonina/administração & dosagem
7.
J Biochem Mol Toxicol ; 35(10): e22877, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34382705

RESUMO

Mygalin, a diacylspermidine that is naturally found in the hemolymph of the spider Acanthoscurria gomesiana, is of interest for development as a potential analgesic. Previous studies have shown that acylpolyamines modulate glutamatergic receptors with the potential to alter pain pathways. This study aimed to evaluate the effects of mygalin on acute and chronic pain in rodents. For evaluation of acute pain, Wistar rats were subjected to tail-flick and hot-plate nociceptive tests. For the evaluation of chronic neuropathic pain, a partial ligation of the sciatic nerve was performed and, 21 days later, animals were examined in hot-plate, tail-flick, acetone, and von Frey tests. Either Mygalin or vehicle was microinjected in the dorsal raphe nucleus (DRN) before the tests. Another group was pretreated with selective antagonists of glutamate receptors (LY 235959, MK-801, CNQX, and NBQX). Mygalin decreases nociceptive thresholds on both acute and chronic neuropathic pain models in all the tests performed. The lowest dose of mygalin yielded the most effective nociception, showing an increase of 63% of the nociceptive threshold of animals with neuropathic chronic pain. In conclusion, mygalin microinjection in the DRN results in antinociceptive effect in models of neuropathic pain, suggesting that acylpolyamines and their derivatives, such as this diacylspermidine, could be pursued for the treatment of neuropathic pain and development of selective analgesics.


Assuntos
Dor Aguda/tratamento farmacológico , Analgésicos/administração & dosagem , Dor Crônica/tratamento farmacológico , Núcleo Dorsal da Rafe/efeitos dos fármacos , Neuralgia/tratamento farmacológico , Espermidina/análogos & derivados , Aranhas/metabolismo , Medicamentos Sintéticos/administração & dosagem , Animais , Modelos Animais de Doenças , Hemolinfa/química , Masculino , Microinjeções/métodos , Ratos , Ratos Wistar , Espermidina/administração & dosagem , Resultado do Tratamento
8.
Behav Brain Res ; 412: 113440, 2021 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-34216647

RESUMO

Cannabis sativa (Marijuana) has a long history as a medicinal plant and Δ9-tetrahydrocannabinol (Δ9-THC) is the most active component in this plant. Cannabinoids are interesting compounds with various modulatory effects on physiological processes and cognitive functions. The use of cannabinoids is a double-edged sword, because they induce both adverse and therapeutic properties. One of the most important roles of cannabinoids is modulating sleep-wake cycle. Sleep, its cycle, and its mechanism are highly unknown. Also, the effects of cannabinoids on sleep-wake cycle are so inconsistent. Thus, understanding the role of cannabinoids in modulating sleep-wake cycle is a critical scientific goal. Cannabinoids interact with many neurotransmitter systems. In this review article, we chose serotonin due to its important role in regulating sleep-wake cycle. We found that the interaction between cannabinoids and serotonergic signaling especially in the dorsal raphe is extensive, unknown, and controversial.


Assuntos
Canabinoides/farmacologia , Serotonina/metabolismo , Sono/fisiologia , Canabinoides/metabolismo , Núcleo Dorsal da Rafe/efeitos dos fármacos , Núcleo Dorsal da Rafe/metabolismo , Humanos , Neurotransmissores/metabolismo , Serotonina/fisiologia , Sono/efeitos dos fármacos , Vigília/efeitos dos fármacos , Vigília/fisiologia
9.
CNS Neurosci Ther ; 27(8): 941-950, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33973716

RESUMO

AIMS: General anesthesia has been widely applied in surgical or nonsurgical medical procedures, but the mechanism behind remains elusive. Because of shared neural circuits of sleep and anesthesia, whether serotonergic system, which is highly implicated in modulation of sleep and wakefulness, regulates general anesthesia as well is worth investigating. METHODS: Immunostaining and fiber photometry were used to assess the neuronal activities. Electroencephalography spectra and burst-suppression ratio (BSR) were used to measure anesthetic depth and loss or recovery of righting reflex to indicate the induction or emergence time of general anesthesia. Regulation of serotonergic system was achieved through optogenetic, chemogenetic, or pharmacological methods. RESULTS: We found that both Fos expression and calcium activity were significantly decreased during general anesthesia. Activation of 5-HT neurons in the dorsal raphe nucleus (DRN) decreased the depth of anesthesia and facilitated the emergence from anesthesia, and inhibition deepened the anesthesia and prolonged the emergence time. Furthermore, agonism or antagonism of 5-HT 1A or 2C receptors mimicked the effect of manipulating DRN serotonergic neurons. CONCLUSION: Our results demonstrate that 5-HT neurons in the DRN play a regulative role of general anesthesia, and activation of serotonergic neurons could facilitate emergence from general anesthesia partly through 5-HT 1A and 2C receptors.


Assuntos
Nível de Alerta/efeitos dos fármacos , Núcleo Dorsal da Rafe/efeitos dos fármacos , Núcleo Dorsal da Rafe/fisiologia , Isoflurano/farmacologia , Neurônios Serotoninérgicos/efeitos dos fármacos , Neurônios Serotoninérgicos/fisiologia , Anestésicos Inalatórios/farmacologia , Animais , Nível de Alerta/fisiologia , Núcleo Dorsal da Rafe/química , Camundongos , Camundongos Transgênicos , Optogenética/métodos , Técnicas de Cultura de Órgãos , Ratos , Ratos Sprague-Dawley , Neurônios Serotoninérgicos/química , Antagonistas da Serotonina/farmacologia , Agonistas do Receptor de Serotonina/farmacologia
10.
Behav Brain Res ; 408: 113268, 2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-33811952

RESUMO

Serotonergic systems are involved in the development and regulation of social behaviour, and drugs that target serotonin neurotransmission, such as selective serotonin reuptake inhibitors (SSRIs), also alter aspects of social approach-avoidance. The midbrain dorsal raphe nucleus (DR), which is a major serotonergic nucleus and main source of serotonergic innervation of the forebrain, has been proposed as an important target for SSRIs, although evidence in females is lacking. In this study, we examined the involvement of the DR serotonergic systems in social behaviour and in response to SSRI treatment, using peri-adolescent female BALB/c mice. Mice were exposed to the SSRI fluoxetine either chronically (18 mg/kg/day, in drinking water, for 12 days) or acutely (18 mg/kg, i.p.), or to vehicle control condition (0.9 % saline, i.p.), prior to being exposed to the three-chambered sociability test. Activation of serotonergic neurons across subregions of the DR were subsequently measured, using dual-label immunohistochemistry for TPH2 and c-Fos. Acute fluoxetine administration increased generalised and social avoidance, while mice exposed to chronic fluoxetine treatment showed levels of social approach behaviour that were comparable to controls. Serotonergic populations across the DR showed reduced activity following acute fluoxetine treatment. Further, activation of serotonergic neurons in the ventral DR correlated with social approach behaviour in vehicle-treated control mice. These data provide some support for the involvement of discrete populations of DR serotonergic neurons in the regulation of social approach-avoidance, although more research is needed to understand the effects and mechanisms of chronic SSRI treatment in females.


Assuntos
Comportamento Animal/efeitos dos fármacos , Núcleo Dorsal da Rafe/efeitos dos fármacos , Núcleo Dorsal da Rafe/metabolismo , Fluoxetina/farmacologia , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Neurônios Serotoninérgicos/efeitos dos fármacos , Comportamento Social , Fatores Etários , Animais , Feminino , Camundongos , Camundongos Endogâmicos BALB C
11.
Neuropharmacology ; 190: 108559, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33845072

RESUMO

Selective serotonin reuptake inhibitors (SSRIs) are designed to improve mood by raising extracellular serotonin levels through the blockade of the serotonin transporter. However, they exhibit a slow onset of action, suggesting the involvement of adaptive regulatory mechanisms. We hypothesized that the microRNA-34 family facilitates the therapeutic activity of SSRIs. We show that genetic deletion of these microRNAs in mice impairs the response to chronic, but not acute, fluoxetine treatment, with a specific effect on behavioral constructs that are related to depression, rather than anxiety. Moreover, using a pharmacological strategy, we found that an increased expression of the serotonin 2C (5-HT2C) receptor in the dorsal raphe region of the brain contributes to this phenotype. The onset of the therapeutic efficacy of SSRIs is paralleled by the desensitization of the 5-HT2C receptor in the dorsal raphe, and 5-HT2C is a putative target of microRNA-34. In this study, acute and chronic fluoxetine treatment differentially alters the expression of 5-HT2C and microRNA-34a in the dorsal raphe. Moreover, by in vitro luciferase assay, we demonstrated the repressive regulatory activity of microRNA-34a against 5-HT2C mRNA. Specific blockade of this interaction through local infusion of a target site blocker was sufficient to prevent the behavioral effects of chronic fluoxetine. Our results demonstrate a new miR-34a-mediated regulatory mechanism of 5-HT2C expression in the dorsal raphe and implicate it in eliciting the behavioral responses to chronic fluoxetine treatment.


Assuntos
Antidepressivos de Segunda Geração/farmacologia , Núcleo Dorsal da Rafe/efeitos dos fármacos , Fluoxetina/farmacologia , Locomoção/efeitos dos fármacos , MicroRNAs/efeitos dos fármacos , Receptor 5-HT2C de Serotonina/efeitos dos fármacos , Animais , Comportamento Animal/efeitos dos fármacos , Núcleo Dorsal da Rafe/metabolismo , Locomoção/genética , Camundongos , Camundongos Knockout , MicroRNAs/genética , Receptor 5-HT2C de Serotonina/genética , Regulação para Cima
12.
Brain Res ; 1762: 147428, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33737066

RESUMO

To assess the long-term effects of chronic adolescent methamphetamine (METH) treatment on the serotonin system in the brain, we used serotonin-1A receptor (5-HT1A) and serotonin transporter (SERT) autoradiography, and quantitative tryptophan-hydroxylase 2 (TPH2) immunohistochemistry in the raphe nuclei of mice. Because of the modulatory role of brain-derived neurotrophic factor (BDNF) on the serotonin system and the effects of METH, we included both BDNF heterozygous (HET) mice and wildtype (WT) controls. Male and female mice of both genotypes were treated with an escalating METH dose regimen from the age of 6-9 weeks. At least two weeks later, acute locomotor hyperactivity induced by a 5 mg/kg D-amphetamine challenge was significantly enhanced in METH-pretreated mice, showing long-term sensitisation. METH pretreatment caused a small, but significant decrease of 5-HT1A receptor binding in the dorsal raphe nucleus (DRN) of males independent of genotype, but there were no changes in the median raphe nucleus (MRN) or in SERT binding density. METH treatment reduced the number of TPH2 positive cells in ventral subregions of the rostral and medial DRN independent of genotype. METH treatment selectively reduced DRN cell counts in BDNF HET mice compared to wildtype mice in medial and caudal ventrolateral subregions previously associated with panic-like behaviour. The data increase our understanding of the long-term and selective effects of METH on brain serotonin systems. These findings could be relevant for some of the psychosis-like symptoms associated with long-term METH use.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Núcleo Dorsal da Rafe/metabolismo , Metanfetamina/toxicidade , Receptor 5-HT1A de Serotonina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Triptofano Hidroxilase/metabolismo , Fatores Etários , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Estimulantes do Sistema Nervoso Central/administração & dosagem , Estimulantes do Sistema Nervoso Central/toxicidade , Núcleo Dorsal da Rafe/efeitos dos fármacos , Feminino , Masculino , Metanfetamina/administração & dosagem , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Serotonina/metabolismo , Fatores de Tempo
13.
PLoS Biol ; 19(3): e3000709, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33690628

RESUMO

Daily rhythms are disrupted in patients with mood disorders. The lateral habenula (LHb) and dorsal raphe nucleus (DRN) contribute to circadian timekeeping and regulate mood. Thus, pathophysiology in these nuclei may be responsible for aberrations in daily rhythms during mood disorders. Using the 15-day chronic social defeat stress (CSDS) paradigm and in vitro slice electrophysiology, we measured the effects of stress on diurnal rhythms in firing of LHb cells projecting to the DRN (cellsLHb→DRN) and unlabeled DRN cells. We also performed optogenetic experiments to investigate if increased firing in cellsLHb→DRN during exposure to a weak 7-day social defeat stress (SDS) paradigm induces stress-susceptibility. Last, we investigated whether exposure to CSDS affected the ability of mice to photoentrain to a new light-dark (LD) cycle. The cellsLHb→DRN and unlabeled DRN cells of stress-susceptible mice express greater blunted diurnal firing compared to stress-näive (control) and stress-resilient mice. Daytime optogenetic activation of cellsLHb→DRN during SDS induces stress-susceptibility which shows the direct correlation between increased activity in this circuit and putative mood disorders. Finally, we found that stress-susceptible mice are slower, while stress-resilient mice are faster, at photoentraining to a new LD cycle. Our findings suggest that exposure to strong stressors induces blunted daily rhythms in firing in cellsLHb→DRN, DRN cells and decreases the initial rate of photoentrainment in susceptible-mice. In contrast, resilient-mice may undergo homeostatic adaptations that maintain daily rhythms in firing in cellsLHb→DRN and also show rapid photoentrainment to a new LD cycle.


Assuntos
Ritmo Circadiano/fisiologia , Habenula/fisiologia , Estresse Psicológico/metabolismo , Animais , Núcleo Dorsal da Rafe/efeitos dos fármacos , Núcleo Dorsal da Rafe/metabolismo , Habenula/citologia , Habenula/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Vias Neurais/fisiologia , Neurônios/fisiologia , Optogenética/métodos , Serotonina/farmacologia , Derrota Social , Estresse Psicológico/fisiopatologia
14.
Neurosci Lett ; 748: 135734, 2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33596470

RESUMO

Animals subjected to early life maternal separation exhibit increased sensitivity to chemical, thermal, and mechanical stimuli during adulthood. However, the mechanism by which maternal separation can alter pain sensitivity in adulthood has not yet been investigated. Thus, we aimed to evaluate the activity of serotonergic and noradrenergic neurons and the effect of serotonin (5-HT) and noradrenaline (NA) reuptake inhibitors in male and female Wistar rats subjected to maternal separation. This study consisted of two experiments: 1) to confirm whether maternal separation increased pain sensitivity (n = 8 per group) and to evaluate the activity of serotonergic neurons in the dorsal raphe nucleus and noradrenergic neurons in locus coeruleus in animals subjected to maternal separation in comparison to controls (n = 6 per group); and 2) to evaluate the effect of fluoxetine (a selective 5-HT reuptake inhibitor) and desipramine (a NA reuptake inhibitor) on sensitivity to chemical stimulation using formalin in animals subjected to maternal separation (n = 8 per group). Our findings indicated that maternal separation increases an animal's sensitivity to painful chemical stimulation and reduces the activity of 5-HT and NA neurons. In addition, acute pretreatment with a 5-HT or NA reuptake inhibitor prevented the increased response to painful stimulation induced by maternal separation. In conclusion, maternal separation increases pain sensitivity by reducing the activity of serotonergic neurons in the dorsal raphe nucleus and noradrenergic neurons in locus coeruleus. This study contributes to possible treatments for pain in individuals exposed to early life stress.


Assuntos
Fluoxetina/farmacologia , Privação Materna , Dor/fisiopatologia , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Neurônios Serotoninérgicos/efeitos dos fármacos , Neurônios Adrenérgicos/efeitos dos fármacos , Animais , Núcleo Dorsal da Rafe/efeitos dos fármacos , Locus Cerúleo/efeitos dos fármacos , Dor/tratamento farmacológico , Ratos Wistar
15.
Neuropharmacology ; 182: 108397, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33188843

RESUMO

The present study aimed to evaluate the effects of pharmacological manipulation of α-adrenergic agonists in the dorsal raphe nucleus (DR) on food intake in satiated rats. Adult male Wistar rats with chronically implanted cannula in the DR were injected with adrenaline (AD) or noradrenaline (NA) (both at doses of 6, 20 and 60 nmol), or α-1 adrenergic agonist phenylephrine (PHE) or α-2 adrenergic agonist clonidine (CLO) (both at doses of 6 and 20 nmol). The injections were followed by the evaluation of ingestive behaviors. Food and water intake were evaluated for 60 min. Administration of AD and NA at 60 nmol and CLO at 20 nmol increased food intake and decreased latency to start consumption in satiated rats. The ingestive behavior was not significantly affected by PHE treatment in the DR. CLO treatment increased Fos expression in the arcuate nucleus (ARC) and paraventricular nucleus of the hypothalamus (PVN) in rats that were allowed to eat during the experimental recording (AF group). However, when food was not offered during the experiment (WAF group), PVN neurons were not activated, whereas, neuronal activity remained high in the ARC when compared to control group. Noteworthy, ARC POMC neurons expressed Fos in the AF group. However, double-labeled POMC/Fos cells were absent in the ARC of the WAF group, although an increase in Fos expression was observed in non-POMC cells after CLO injections in the WAF group. In conclusion, the data from the present study highlight that the pharmacological activation of DR α-adrenoceptors affects food intake in satiated rats. The feeding response evoked by CLO injections into DR was similar to that induced by NA or AD injections, suggesting that the hyperphagia after NA or AD treatment depends on α-2 adrenoceptors activation. Finally, we have demonstrated that CLO injections into DR impact neuronal activity in the ARC, possibly evoking a homeostatic response toward food intake.


Assuntos
Agonistas de Receptores Adrenérgicos alfa 2/administração & dosagem , Clonidina/administração & dosagem , Núcleo Dorsal da Rafe/efeitos dos fármacos , Ingestão de Alimentos/efeitos dos fármacos , Receptores Adrenérgicos alfa 2 , Saciação/efeitos dos fármacos , Animais , Núcleo Dorsal da Rafe/metabolismo , Relação Dose-Resposta a Droga , Ingestão de Alimentos/fisiologia , Injeções Intraventriculares , Masculino , Ratos , Ratos Wistar , Receptores Adrenérgicos alfa 2/metabolismo , Saciação/fisiologia
16.
Psychopharmacology (Berl) ; 238(1): 29-40, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33231727

RESUMO

RATIONALE: The serotonin (5-hydroxytryptamine, 5-HT) system plays an important role in stress-related psychiatric disorders and substance abuse. Our previous data show that stressors can inhibit 5-HT neuronal activity and release by stimulating the release of the stress neurohormone corticotropin-releasing factor (CRF) within the serotonergic dorsal raphe nucleus (DRN). The inhibitory effects of CRF on 5-HT DRN neurons are indirect, mediated by CRF-R1 receptors located on GABAergic afferents. OBJECTIVES: We tested the hypothesis that DRN CRF-R1 receptors contribute to stress-induced reinstatement of morphine-conditioned place preference (CPP). We also examined the role of this circuitry in stress-induced negative affective state with 22-kHz distress ultrasonic vocalizations (USVs), which are naturally emitted by rats in response to environmental challenges such as pain, stress, and drug withdrawal. METHODS: First, we tested if activation of CRF-R1 receptors in the DRN with the CRF-R1-preferring agonist ovine CRF (oCRF) would reinstate morphine CPP and then if blockade of CRF-R1 receptors in the DRN with the CRF-R1 antagonist NBI 35965 would attenuate swim stress-induced reinstatement of morphine CPP. Second, we tested if intra-DRN pretreatment with NBI 35965 would attenuate foot shock stress-induced 22-kHz USVs. RESULTS: Intra-DRN injection of oCRF reinstated morphine CPP, while intra-DRN injection of NBI 35965 attenuated swim stress-induced reinstatement. Moreover, intra-DRN pretreatment with NBI 35965 significantly reduced 22-kHz distress calls induced by foot shock. CONCLUSIONS: These data provide evidence that stress-induced negative affective state is mediated by DRN CRF-R1 receptors and may contribute to reinstatement of morphine CPP.


Assuntos
Analgésicos Opioides/farmacologia , Hormônio Liberador da Corticotropina/metabolismo , Núcleo Dorsal da Rafe/efeitos dos fármacos , Morfina/farmacologia , Motivação/efeitos dos fármacos , Serotonina/metabolismo , Estresse Psicológico/psicologia , Analgésicos Opioides/administração & dosagem , Animais , Comportamento Animal/efeitos dos fármacos , Condicionamento Psicológico/efeitos dos fármacos , Hormônio Liberador da Corticotropina/administração & dosagem , Hormônio Liberador da Corticotropina/agonistas , Hormônio Liberador da Corticotropina/análogos & derivados , Núcleo Dorsal da Rafe/metabolismo , Extinção Psicológica/efeitos dos fármacos , Masculino , Morfina/administração & dosagem , Dependência de Morfina/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de Hormônio Liberador da Corticotropina/antagonistas & inibidores , Reforço Psicológico , Ovinos , Estresse Psicológico/metabolismo , Síndrome de Abstinência a Substâncias/metabolismo
17.
Life Sci ; 265: 118777, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33220293

RESUMO

The dorsal raphe nucleus (DRN) is a brainstem nucleus involved in the pathophysiology of the depression, through its serotoninergic innervation. Furthermore, depressive symptoms in patients are also associated with some memory and sleep complaints. Anatomical evidence confirmed the presence of projections from the lateral hypothalamus to serotonergic neurons of the dorsal raphe nucleus (DRN). These projection fibers release orexin neuropeptides which play roles in the spatial memory. Both of the orexinergic receptors are widely distributed in dorsal raphe nucleus. Therefore, the present work was aimed to assess the probable roles of orexin 1 and 2 receptors using an orexin 1 receptor antagonist, SB-334867-A, and an orexin 2 receptor antagonist, TCS-OX2-29 in the DRN on the retrieval, and consolidation phases of spatial reference memory in the Morris water maze (MWM) task. The results demonstrated that blocking orexin 1 receptors in the DRN impairs the process of memory consolidation in the spatial MWM via increasing in the time of the escape latency of the probe day. Blocking these receptors did not affect the retrieval phase of MWM learning. Furthermore, blocking of the orexin 2 receptors in this area did not affect neither consolidation nor retrieval phases of the memory. In conclusion, orexin 1 receptors in the DRN play major roles in the consolidation of the spatial reference memory in rats.


Assuntos
Núcleo Dorsal da Rafe/fisiologia , Receptores de Orexina/fisiologia , Memória Espacial/fisiologia , Animais , Benzoxazóis/farmacologia , Núcleo Dorsal da Rafe/efeitos dos fármacos , Masculino , Teste do Labirinto Aquático de Morris/efeitos dos fármacos , Teste do Labirinto Aquático de Morris/fisiologia , Naftiridinas/farmacologia , Antagonistas dos Receptores de Orexina/farmacologia , Receptores de Orexina/efeitos dos fármacos , Receptores de Orexina/metabolismo , Ratos , Memória Espacial/efeitos dos fármacos , Ureia/análogos & derivados , Ureia/farmacologia
18.
Cell Rep ; 33(2): 108267, 2020 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-33053350

RESUMO

Major depressive disorder is associated with weight loss and decreased appetite; however, the signaling that connects these conditions is unclear. Here, we show that MC4R signaling in the dorsal raphe nucleus (DRN) affects feeding, anxiety, and depression. DRN infusion of α-MSH decreases DRN neuronal activation and feeding. DRN MC4R is expressed in GABAergic PRCP-producing neurons. DRN selective knockdown of PRCP (PrcpDRNKD), an enzyme inactivating α-MSH, decreases feeding and DRN neuronal activation. Interestingly, PrcpDRNKD mice present lower DRN serotonin levels and depressive-like behavior. Similarly, PRCP-ablated MC4R mice (PrcpMC4RKO) show metabolic and behavioral phenotypes comparable to those of PrcpDRNKD mice. Selective PRCP re-expression in DRN MC4R neurons of PrcpMC4RKO mice partially reverses feeding, while fully restoring mood behaviors. Chemogenetic inhibition of DRN MC4R neurons induces anxiety, depression, and reduced feeding, whereas chemogenetic activation reverses these effects. Our results indicate that MC4R signaling in DRN plays a role in feeding, anxiety, and depression.


Assuntos
Ansiedade/metabolismo , Depressão/metabolismo , Núcleo Dorsal da Rafe/metabolismo , Comportamento Alimentar , Receptor Tipo 4 de Melanocortina/metabolismo , Transdução de Sinais , Animais , Ansiedade/complicações , Comportamento Animal , Depressão/complicações , Núcleo Dorsal da Rafe/efeitos dos fármacos , Comportamento Alimentar/efeitos dos fármacos , Melanocortinas/metabolismo , Camundongos Knockout , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Serotonina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/metabolismo , alfa-MSH/farmacologia
19.
Brain Res Bull ; 164: 289-298, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32910991

RESUMO

Previous studies showed that mecamylamine a noncompetitive and nonspecific blocker of nicotinic acetylcholine receptors (nAChRs), stimulates the activity of the dorsal raphe nucleus (DRN) serotonergic neurons and DRN serotonin (5-HT) release. In the present study, the mechanisms involved in these mecamylamine-induced effects were examined using electrophysiology and calcium-imaging studies, both performed in Wistar rat midbrain slices. Mecamylamine (0.5-9 µM), bath administered, increased the firing frequency of identified 5-HT DRN neurons by a maximum of 5% at 3 µM. This effect was accompanied by a 112 % increase in the frequency of spontaneous excitatory postsynaptic currents of 5-HT DRN neurons. It was blocked by the AMPA/kainate receptor blocker CNQX (10 µM) and by the specific α4ß2 nAChRs blocker dihydro-ß-erythroidine (100 nM) but was not affected by tetrodotoxin (TTX, 500 nM). Simultaneously, mecamylamine produced a 58 % decrease in the frequency of GABAergic spontaneous inhibitory postsynaptic currents, an effect that was not influenced by TTX. Calcium-imaging studies support the results obtained with the electrophysiological studies by showing that mecamylamine (3 µM) increases the activity of a cell population located in the midline of the DRN, which was sensitive to the inhibitory effects of 8-OH-DPAT, an agonist at 5-HT1A receptors. It is assumed that mecamylamine, in low concentrations, acts as an agonist of α4ß2 nAChRs present on the glutamatergic DRN terminals, thus increasing intra-raphe glutamate release. This stimulatory effect is reinforced by the decrease in DRN GABA release, which is dependent on the mecamylamine-induced blockade of α7 nAChRs located on DRN GABAergic terminals. We hypothesize that at least a part of mecamylamine antidepressant effects described in animal models of depression are mediated by an increase in DRN 5-HT release.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Núcleo Dorsal da Rafe/efeitos dos fármacos , Bloqueadores Ganglionares/farmacologia , Mecamilamina/farmacologia , Neurônios Serotoninérgicos/efeitos dos fármacos , Animais , Cálcio/metabolismo , Núcleo Dorsal da Rafe/metabolismo , Masculino , Técnicas de Patch-Clamp , Ratos , Ratos Wistar , Neurônios Serotoninérgicos/metabolismo
20.
Neuropharmacology ; 180: 108309, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32956675

RESUMO

Serotonin2B receptor (5-HT2BR) antagonists inhibit cocaine-induced hyperlocomotion independently of changes of accumbal dopamine (DA) release. Given the tight relationship between accumbal DA activity and locomotion, and the inhibitory role of medial prefrontal cortex (mPFC) DA on subcortical DA neurotransmission and DA-dependent behaviors, it has been suggested that the suppressive effect of 5-HT2BR antagonists on cocaine-induced hyperlocomotion may result from an activation of mPFC DA outflow which would subsequently inhibit accumbal DA neurotransmission. Here, we tested this hypothesis by means of the two selective 5-HT2BR antagonists, RS 127445 and LY 266097, using a combination of neurochemical, behavioral and cellular approaches in male rats. The intraperitoneal (i.p.) administration of RS 127445 (0.16 mg/kg) or LY 266097 (0.63 mg/kg) potentiated cocaine (10 mg/kg, i.p.)-induced mPFC DA outflow. The suppressant effect of RS 127445 on cocaine-induced hyperlocomotion was no longer observed in rats with local 6-OHDA lesions in the mPFC. Also, RS 127445 blocked cocaine-induced changes of accumbal glycogen synthase kinase (GSK) 3ß phosphorylation, a postsynaptic cellular marker of DA neurotransmission. Finally, in keeping with the location of 5-HT2BRs on GABAergic interneurons in the dorsal raphe nucleus (DRN), the intra-DRN perfusion of the GABAAR antagonist bicuculline (100 µM) prevented the effect of the systemic or local (1 µM, intra-DRN) administration of RS 127445 on cocaine-induced mPFC DA outflow. Likewise, intra-DRN bicuculline injection (0.1 µg/0.2 µl) prevented the effect of the systemic RS 127445 administration on cocaine-induced hyperlocomotion and GSK3ß phosphorylation. These results show that DRN 5-HT2BR blockade suppresses cocaine-induced hyperlocomotion by potentiation of cocaine-induced DA outflow in the mPFC and the subsequent inhibition of accumbal DA neurotransmission.


Assuntos
Córtex Cerebral/metabolismo , Dopamina/metabolismo , Núcleo Dorsal da Rafe/metabolismo , Locomoção/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Antagonistas do Receptor 5-HT2 de Serotonina/farmacologia , Animais , Córtex Cerebral/efeitos dos fármacos , Cocaína/farmacologia , Inibidores da Captação de Dopamina/farmacologia , Núcleo Dorsal da Rafe/efeitos dos fármacos , Locomoção/fisiologia , Masculino , Núcleo Accumbens/efeitos dos fármacos , Pirimidinas/farmacologia , Ratos , Ratos Sprague-Dawley , Receptor 5-HT2B de Serotonina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA